本文介绍: 今天给大家介绍一款OLAP大数据处理软件 clickhouse ,在业界它有一个荣誉,那就是”快“,当然此快不是开车快的意思,是指clickhouse在大数据量级的查询方面,对比Spark 、MySQL 、Hive 、Hadoop,速度有很大的提升。下面我们从clickhouse的起源、OLAP/OLTP、go语言开发实践、clickhouse的表存储引擎分析这几个方面,讲解clickhouse为何适合做大数据分析、数据挖掘,什么情况下用什么样的表引擎,以及clickhouse的缺陷等。
系列文章目录
[数据挖掘] clickhouse在go语言里的实践
[数据挖掘] 用户画像平台构建与业务实践
前言
今天给大家介绍一款OLAP大数据处理软件 clickhouse ,在业界它有一个荣誉,那就是”快“,当然此快不是开车快的意思,是指clickhouse在大数据量级的查询方面,对比Spark 、MySQL 、Hive 、Hadoop,速度有很大的提升。
下面我们从clickhouse的起源、OLAP/OLTP、go语言开发实践、clickhouse的表存储引擎分析这几个方面,讲解clickhouse为何适合做大数据分析、数据挖掘,什么情况下用什么样的表引擎,以及clickhouse的缺陷等。
一、clickhouse的起源
ClickHouse起源于Yandex公司的Metrica产品团队。Metrica是一款Web流量分析工具,根据用户行为数据采集,进行数据OLAP分析。数据采集的Event由页面的点击(click)产生,然后进入数据仓库进行OLAP分析。ClickHouse的全称为Click Stream,Data WareHouse,简称ClickHouse。2021年9月20日,ClickHouse团队从Yandex独立,成立公司。
二、OLAP/OLTP
OLAP和OLTP是数据处理和交易过程中的两种不同类型的方法。
OLTP,也称为联机事务处理过程,主要侧重于前台接收的用户数据可以立即传送到计算中心进行处理,并在很短的时间内给出处理结果。这种处理方式是对用户操作快速响应的方式之一,其基本特征是处理少量的事务性数据。
OLAP,全称联机分析处理,使分析人员能够迅速、一致、交互地从各个方面观察信息,以达到深入理解数据的目的。它帮助分析人员快速获得数据,并进行分析和预测。
2.1、主流的OLAP/OLTP数据库
三、go语言开发实践
3.1、安装配置go语言环境,配置IDE
3.1.1、Go开发环境安装
3.1.2、IDE开发环境安装
3.2、goframe工具安装
3.3、引入clickhouse组件
3.4、goframe使用clickhouse的完整项目
4、clickhouse的表引擎分析
4.1、MergeTree
4.2、ReplacingMergeTree
5、clickhouse为何适合做大数据分析、数据挖掘,什么情况下用什么样的表引擎,以及clickhouse的缺陷
5.1、clickhouse为何适合做大数据分析、数据挖掘
5.2、ClickHouse查询缺陷
5.2.1、单机时的查询处理缺陷
5.2.2、集群成本高
5.3.3、多表联查性能不佳
5.3.4、修改、删除支持非常差
6、架构设计
6.1、Clickhouse
6.2、MySQL
6.3、Redis
总结
声明:本站所有文章,如无特殊说明或标注,均为本站原创发布。任何个人或组织,在未征得本站同意时,禁止复制、盗用、采集、发布本站内容到任何网站、书籍等各类媒体平台。如若本站内容侵犯了原著者的合法权益,可联系我们进行处理。