1 简介
今天向大家介绍一个帮助往届学生完成的毕业设计项目,基于深度学习的农作物病虫害识别系统。
ABSTRACT
及时、准确地诊断植物病害,对于防止农业生产的损失和农产品的损失或减少具有重要作用。为了解决这类问题,可以使用基于机器学习的方法。近年来,在图像处理中应用尤其广泛的深度学习为精准农业提供了许多新的应用。在本研究中,我们利用九种强大的深度神经网络结构的不同方法来评估植物病害检测的性能结果。采用迁移学习和深度特征提取方法,使这些深度学习模型能够适应当前的问题。在本文的工作中,我们考虑了利用预处理的深度模型进行特征提取和进一步的微调。通过深度特征提取得到的特征通过支持向量机(SVM)、极限学习机(ELM)和k -最近邻(KNN)方法进行分类。实验使用的数据包括来自土耳其的真实疾病和害虫图像。计算准确性、敏感性、特异性和f1评分,进行绩效评价。评价结果表明,深度特征提取和SVM/ELM分类的效果优于迁移学习。此外,AlexNet、VGG16和VGG19模型的fc6层与其他层相比产生了更好的精度得分。
关键词:植物病虫害检测,卷积神经网络,深度学习架构,特征提取,分类器方法
Introduction
在植物中,病害的征兆通常发生在叶片、果实、芽和幼枝上。这种情况会导致水果浪费(掉落)或被损坏。此外,这些疾病导致新的感染和疾病的传播,诸如季节性条件。因此,在疾病传播到其他树木之前,提前确定疾病并采取必要的预防措施是非常重要的。因此,与植物病虫害作斗争是农业中唯一最重要的问题[1-3]
影响植物的疾病有很多种,每种都可能造成经济、社会和生态损失。在此背景下,及时、准确地诊断植物病害对防止农产品产量和数量的损失具有重要作用。植物病害的检测通常是人工进行的。这些过程由植物学家和农业工程师等专家进行,首先通过视觉检查,然后在实验室环境中进行。这些传统方法往往是耗时且复杂的过程[1,3]。基于这些原因,基于图像处理和机器学习的自动识别疾病变得非常重要。用视觉检测的方法对植物病害进行自动诊断,对那些对所种植的产品知之甚少或一无所知的用户有很大的帮助。
关于植物病害的检测,文献中有许多研究。在过去的十年中,这些研究往往是基于分类过程,利用颜色、形状、纹理等特征进行的[4 – 7,9,9,10]。基于这些属性的方法的主要缺点是: