本文介绍: 实现函数有nn.functional.interpolate(input, size = None, scale_factor = None, mode = ‘nearest’, align_corners = None)和nn.ConvTranspose2d(in_channels, out_channels, kernel_size, stride = 1, padding = 0, output_padding = 0, bias = True)介绍:为了提升网络的非线性能力,以提高网络的表达能力。
1. 卷积层
常见的卷积操作如下:
补充:
1 x 1卷积即用1 x 1的卷积核进行卷积操作,其作用在于升维与降维。升维操作常用于chennel为1(即是通道数为1)的情况下,降维操作常用于chennel为n(即是通道数为n)的情况下。
声明:本站所有文章,如无特殊说明或标注,均为本站原创发布。任何个人或组织,在未征得本站同意时,禁止复制、盗用、采集、发布本站内容到任何网站、书籍等各类媒体平台。如若本站内容侵犯了原著者的合法权益,可联系我们进行处理。