本文介绍: 研究首先利用Hadoop的HDFS存储系统存储数据,然后通过Flume组件自动加载数据到Hive数据库中进行分析。研究重点关注了电子商务关键指标,如PV、UV、跳失率、重复购买率等,并进行多维度透视分析以洞察用户行为和活跃度。此外,研究还详细分析了热销商品ID、商品类别和用户地理位置,以探索不同产品类别的销售业绩和电子商务指标。分析结果存储于Hive数据库后,通过Sqoop组件导出到MySQL,然后使用Python的Pyecharts可视化库进行结果展示。
有需要本项目或者部署的系统可以私信博主,提供远程部署和讲解
本研究基于淘宝用户行为的开源数据展开大数据分析研究,通过Hadoop大数据分析平台对阿里天池公开的开源数据集进行多维度的用户行为分析,为电商销售提供可行性决策。
首先我们将大数据集上传到Hadoop中的HDFS存储,之后利用Hadoop的Flume组件,配置好自动加载数据的环境,将数据加载到hive数据库中进行大数据分析。
通过对常见的电商指标:PV、UV、跳失率、复购率等进行统计分析,按照时间维度对用户的行为、活跃度等指标进行多维度透视分析,然后对电商数据中的热销ID及热销商品类别、用户地理位置进行统计分析。将分析出来的结果表,存入到hive数据库中,然后利用sqoop组件,将hive数据库中的结果表自动导出到关系型数据库MySQL中,便于数据的存储和分析展示。
Hadoop操作
可视化展示
系统页面展示
机器学习
总结
每文一语
声明:本站所有文章,如无特殊说明或标注,均为本站原创发布。任何个人或组织,在未征得本站同意时,禁止复制、盗用、采集、发布本站内容到任何网站、书籍等各类媒体平台。如若本站内容侵犯了原著者的合法权益,可联系我们进行处理。