本文介绍: 中间一行相当于f(x),第3行相当于f(x+1),第1行相当于f(x-1);相当于第3行的像素点减去第1行的像素点最后得到的就是垂直方向上的近似梯度。中间一列相当于f(x),第3列相当于f(x+1),第1列相当于f(x-1);相当于第3列的像素点减去第1列的像素点最后得到的就是水平方向上的近似梯度。的值,是图像的显著特点之一,在图像特征提取,对象检测,模式识别等方面都有重要的作用。前面所提到的滤波都是用于降噪的,去掉噪声,而算子是用来找边界,来识别图像的边缘。图像时二维的,即沿着宽度/高度两个方向。
前面所提到的滤波都是用于降噪的,去掉噪声,而算子是用来找边界,来识别图像的边缘。
一、概念
边缘是像素值发生跃迁的值,是图像的显著特点之一,在图像特征提取,对象检测,模式识别等方面都有重要的作用。
人眼如何识别图像的边缘呢?
比如有一幅画,图里面有一条线,左边很亮,右边很暗,那人眼就很容易识别这条线作为边缘,也就是像素的灰度值快速变化的地方。
sobel算子对图像求一阶导数。一阶导数越大,说明像素在该方面的变化越大,边缘信号越强。
因为图像的灰度值都是离散的数字,sobel算子采样离散差分算子计算图像像素点亮度值的近似梯度。
二.示例代码如下所示
声明:本站所有文章,如无特殊说明或标注,均为本站原创发布。任何个人或组织,在未征得本站同意时,禁止复制、盗用、采集、发布本站内容到任何网站、书籍等各类媒体平台。如若本站内容侵犯了原著者的合法权益,可联系我们进行处理。