论文链接:https://arxiv.org/pdf/2401.06305.pdf
论文题目:用于自动驾驶最优间距选择和速度规划的多配置二次规划(MPQP)
1 摘要
本文介绍了用于自动驾驶最优间距选择和速度规划的多配置二次规划(MPQP)。平滑且安全的路径规划对于自动驾驶汽车的成功部署是至关重要的。本文提出了一种用于自动驾驶最优速度规划的数学表示,其在具有实际约束的高保真度的仿真和现实道路演示中得以验证。该算法使用广度优先搜索来探索时间和空间域中内部交通间距。对于每个间距,二次规划找到一个最佳速度曲线,将时间和空间对与动态障碍物同步。通过对Carla算法的定性和定量分析,讨论了该算法的光滑性和鲁棒性。最后,本文给出了城市驾驶的道路演示结果。
2 Introduction
背景
:轨迹规划一直是自动驾驶领域研究的热点,虽然传统规划算法存在了很久[1][2],要求在高度动态和不确定的场景中高效、精确、平稳地导航。在安全性至关重要的情况下,促使研究人员探索现有算法的局限性,优先考虑经常相互冲突的目标[3][4][5]。因为可解释性和理论保证,MPC和二次规划QP等形式优化方法仍然是自动驾驶轨迹规划和控制任务的热门选择[6][7]。
存在动态和不确定智能体的运动规划会导致非凸问题[8][9]。这些可能是(1)求解缓慢,限制了解决方案的最优性或时间范围 (2)使用陷入局部最优的近似,导致不稳定或其他不期望的轨迹[10]。因此,路径和速度分解方法已经被积极采用,以减轻规划子任务的复杂性[8][11][12][13]。通过将路径规划问题与速度规划问题解耦,我们可以限制优化空间,从而获得更快的高质量解决方案。
近年来,一直在努力改进分解方法[12][15],特别是对于自动驾驶ST图[16][17]的应用。一直是一个热门的选择,细化下限和上限,从而减少搜索空间。ST图还有助于解决动态障碍物及其相关的排序问题[18],见下图。
上图所示,车辆的动机:存在自车(绿色)沿着汽车123交叉时刻一起穿过交叉路口的多个时刻选择。精确同步时间和距离以及选择最佳间隙是安全机动的关键。
虽然ST图简化了问题,但时间和空间的同步仍然具有挑战性[19]。为了解决这个问题,作者在[13]中添加了同步时间作为决策变量,并使用QP迭代近似解决了非凸问题。然而,迭代过程中通常计算量很大,有可能近似导致局部最优[20]。类似地,作者在[16]中采用ST图并将非凸问题近似为QP,但在空间域中求解它便于基于位置的速度限制的积分(例如对于弯曲路径)。然而,空间域中的规划不能无缝地考虑0速度,因为他们导致时间评估无穷大[21],这在走走停停地场景中是有问题的。在[22][17]中,作者应用动态规划DP直接优化ST图上的非凸问题。然而,DP通常受到维数灾难的影响,因此通常在状态和控制输入的数量上受到限制。自定义[22]和启发式解决方案[17](例如,使用螺旋曲线插值[22])对于实时实现是不可避免的,而状态和控制的数量仍然有限。总而言之,现有方法是有前途并且符合数学的,但还没有严格解决设计速度规划器的方法:(1)在时间空间中搜索解(2)在没有近似的情况下确保全局最优性(3)在没有并行计算的情况下具有高计算效率(4)解决沿着动态障碍空间与时间同步。重要的是,在各种场景中进行彻底的验证,在学术文献中经常缺失,在自动化车辆中部署方法之前是必不可少的。