本文介绍: 什么是神经网络?和深度学习什么关系?
在学习深度学习的相关知识之前,我们首先得了解什么是神经网络,解开神经网络的神秘面纱后,什么是深度学习的问题也就迎刃而解。我依旧会采用我习惯的方式:先给出例子直观理解,在给出定义深入理解,最后在实际应用中强化理解。
一、什么是神经网络?
(1)感知机就是单个神经元
看到神经网络自然会想到,这是一个仿生学的概念(模拟动物大脑中的神经网络),既然是一张网必然是无数个点线组成,那么首先了解神经网络最基本的单位(感知机)肯定没错。
图中是一个接收两个输入信号的感知机的例子。x1、x2是输入信号, y是输出信号,w1、w2是权重(w是weight的首字母)。图中的○圆圈称为“神经元”或者“节点”。输入信号被送往神经元时,会被分别乘以固定的权重。神经元会计算传送过来的信号的总和,只有当这个总和超过了某个界限值时,才会输出1。这也称为“神经元被激活”。这里将这个界限值称为阈值,用符号θ表示。
写成数学公式的形式如下:
(2)多层感知机便构成了网络即神经网络
(3)神经网络的定义
① 神经网络分哪些层?
② 神经网络到底在学习什么?
③ 一些符号的说明
二、神经网络和深度学习什么关系?
声明:本站所有文章,如无特殊说明或标注,均为本站原创发布。任何个人或组织,在未征得本站同意时,禁止复制、盗用、采集、发布本站内容到任何网站、书籍等各类媒体平台。如若本站内容侵犯了原著者的合法权益,可联系我们进行处理。