本文介绍: 大多数用于医学分割的数据增强技术最初是在自然图像上开发的,没有考虑到医学图像整体布局标准固定的特点。基于医学图像的特点,作者开发了切割-拼接数据增强(CS-DA)方法,这是一种用于医学图像分割的新型数据增强技术。CS-DA通过将从不同原始医学图像中切割的不同位置分量拼接成新图像来增强数据集。CS-DA的思想很简单:假设有五张原始医学图像,每张图像都代表不同的医学情境,如X光片或MRI图像。每
CS-DA 核心思想
论文链接:https://arxiv.org/ftp/arxiv/papers/2210/2210.09099.pdf
大多数用于医学分割的数据增强技术最初是在自然图像上开发的,没有考虑到医学图像整体布局标准固定的特点。
基于医学图像的特点,作者开发了切割-拼接数据增强(CS-DA)方法,这是一种用于医学图像分割的新型数据增强技术。
CS-DA通过将从不同原始医学图像中切割的不同位置分量拼接成新图像来增强数据集。
CS-DA的思想很简单:
自然图像和医学图像之间的关键差异
CS-DA 步骤
确定增强后的数据数量
代码复现
声明:本站所有文章,如无特殊说明或标注,均为本站原创发布。任何个人或组织,在未征得本站同意时,禁止复制、盗用、采集、发布本站内容到任何网站、书籍等各类媒体平台。如若本站内容侵犯了原著者的合法权益,可联系我们进行处理。