本文介绍: (1)它引入了信息值(information value)的概念来修正信息熵的计算结果,以抑制ID3更偏向于选择具有更多分类水平的列进行展开的情况,从而间接地抑制模型过拟合的倾向;即在连续变量中寻找相邻的取值的中间点作为备选切分点,通过计算切分后的GR值来挑选最终数据集划分方式。C4.5中信息值(以下简称IV值)是一个用于衡量数据集在划分时分支个数的指标,如果划分时分支越多,IV值就越高。(2)C4.5新增了对连续变量的处理方法,采用类似于CART树的方法来寻找相邻取值的中间值作为切分点;
C4.5决策树的基本建模流程
作为ID3算法的升级版,C4.5在三个方面对ID3进行了优化:
(1)它引入了信息值(information value)的概念来修正信息熵的计算结果,以抑制ID3更偏向于选择具有更多分类水平的列进行展开的情况,从而间接地抑制模型过拟合的倾向;
(2)C4.5新增了对连续变量的处理方法,采用类似于CART树的方法来寻找相邻取值的中间值作为切分点;
(3)C4.5加入了决策树的剪枝流程,以进一步提升模型的泛化能力。
然而,需要注意的是,尽管C4.5进行了这些改进,但它仍然只能解决分类问题,其本质仍然是一种分类树。
C4.5中信息值(以下简称IV值)是一个用于衡量数据集在划分时分支个数的指标,如果划分时分支越多,IV值就越高。具体IV值的计算公式如下:
上次介绍的ID3决策树的建模流程中,
以湿度的不同取值为划分规则时:
声明:本站所有文章,如无特殊说明或标注,均为本站原创发布。任何个人或组织,在未征得本站同意时,禁止复制、盗用、采集、发布本站内容到任何网站、书籍等各类媒体平台。如若本站内容侵犯了原著者的合法权益,可联系我们进行处理。