本文介绍: 训练并将pt转换为onnx,再将onnx采用py3.8-rknn2-1.4.0推理转换为rknn出现置信度大于1,并且图像乱框问题。经过网上一顿查找发现是在将pt文件转化为onnx时对models/yolo.py的修改有问题。网上大部分的修改都是下面这种。其中./runs/train/exp3/weights/best.pt换成自己训练的pt文件。这是导致问题的根源,至于为什么现在我还没办法回答。正确的应该按如下方式修改。export.py文件的run函数。export.py文件的开头加上。
前言
环境介绍:
1.编译环境
Ubuntu 18.04.5 LTS
2.RKNN版本
py3.8-rknn2-1.4.0
3.单板
迅为itop-3568开发板
一、现象
采用yolov5训练并将pt转换为onnx,再将onnx采用py3.8-rknn2-1.4.0推理转换为rknn出现置信度大于1,并且图像乱框问题。
类似下面这样
二、解决
经过网上一顿查找发现是在将pt文件转化为onnx时对models/yolo.py的修改有问题。网上大部分的修改都是下面这种
models/yolo.py
这是导致问题的根源,至于为什么现在我还没办法回答。正确的应该按如下方式修改
声明:本站所有文章,如无特殊说明或标注,均为本站原创发布。任何个人或组织,在未征得本站同意时,禁止复制、盗用、采集、发布本站内容到任何网站、书籍等各类媒体平台。如若本站内容侵犯了原著者的合法权益,可联系我们进行处理。