或许在生活中,经常会碰到针对某一个问题,在众多的限制条件下,如何去寻找一个最优解?可能大家想到了很多诸如“线性规划”,“动态规划”这些经典策略,当然有的问题我们可以用贪心来寻求整体最优解,在图论中一个典型的贪心法求最优解的例子就莫过于“最短路径”的问题。
一、概序
从下图中我要寻找 V0 到 V3 的最短路径,你会发现通往他们的两点路径有很多:V0->V4->V3,V0->V1->V3,当然你会认为前者是你要找的最短路径,那如果说图的顶点非常多,你还会这么轻易的找到吗?下面我们就要将刚才我们那点贪心的思维系统的整理下。
二、构建
如果大家已经了解 Prim 算法,那么 Dijkstra 算法只是在它的上面延伸了下,其实也是很简单的。
2.1、边节点
这里有点不一样的地方就是我在边上面定义一个 vertexs 来记录贪心搜索到某一个节点时曾经走过的节点,比如从 V0 贪心搜索到 V3 时,我们 V3 的 vertexs 可能存放着 V0,V4,V3 这些曾今走过的节点,或许最后这三个节点就是我们要寻找的最短路径。
2.2、Dijkstra 算法
首先我们分析下 Dijkstra 算法的步骤:
有集合 M={V0,V1,V2,V3,V4}这样 5 个元素,我们用 TempVertex 表示该顶点是否使用。
Weight 表示该 Path 的权重(默认都为 MaxValue)。
Path 表示该顶点的总权重。
①. 从集合 M 中挑选顶点 V0 为起始点。给 V0 的所有邻接点赋值,要赋值的前提是要赋值的 weight 要小于原始的 weight,并且排除已经访问过的顶点,然后挑选当前最小的 weight 作为下一次贪心搜索的起点,就这样 V0V1 为挑选为最短路径,如图 2。
②. 我们继续从 V1 这个顶点开始给邻接点以同样的方式赋值,最后我们发现 V0V4 为最短路径。也就是图 3。
……
③. 最后所有顶点的最短路径就这样求出来了 。