本文介绍: 在 Flink SQL 中,Temporal Joins 是一种常见的数据关联操作,特别适用于处理包含时间维度的数据。Lookup Join 是 Temporal Joins 的一种类型,它允许将流数据与维表数据进行关联。当您有一个实时的流数据流,并且需要与维表进行关联,以获取维度信息时,Lookup Join 是一个很有用的工具。例如,在电商领域,您可以将实时的订单流与商品维表进行关联,以获取商品的详细信息,如名称、价格、类别等。
说明
在 Flink SQL 中,Temporal Joins 是一种常见的数据关联操作,特别适用于处理包含时间维度的数据。Lookup Join 是 Temporal Joins 的一种类型,它允许将流数据与维表数据进行关联。使用场景如下:
总的来说,Lookup Join 适用于需要实时、动态和高效地关联流数据与维度数据的场景。它可以帮助您获取最新的维度信息,并在流数据处理过程中进行高效的维度查询和关联操作。
您可以使用 Lookup Join 将订单流与商品维表进行关联,以获取订单中商品的详细信息。以下是一个使用 Flink SQL 的示例:
在上述示例中,我们首先创建了订单流表和商品维表。订单流表从 Kafka 主题中读取实时订单数据,商品维表通过 JDBC 连接到 MySQL 数据库中的商品表。
然后,我们执行 Lookup Join 操作,将订单流表 orders
与商品维表 products
关联起来。通过 JOIN products FOR SYSTEM_TIME AS OF o.orderTime
,我们将商品维表与订单流进行关联,并根据订单的事件时间 orderTime
来获取相应时间点的维度信息。
实例demo
声明:本站所有文章,如无特殊说明或标注,均为本站原创发布。任何个人或组织,在未征得本站同意时,禁止复制、盗用、采集、发布本站内容到任何网站、书籍等各类媒体平台。如若本站内容侵犯了原著者的合法权益,可联系我们进行处理。